
Generations of Consumer 
Computer Graphics as 
Seen in Demos
Markku Reunanen, Aalto University



Outline
● Consumer computer graphics
● Different generations with examples
● Conclusion
● Further reading



The microcomputer era
● First affordable home computers in the late 

1970s
○ Apple II, TRS-80, Atari 400/800

● Home computer fever of the early 1980s
● Concurrent rise of consumer electronics

○ Pocket calculators
○ VCRs
○ Electronic and video games



Consumer computer 
graphics
● Vast developments from late 1970s to today
● We may observe “generations”

○ Increasing computing power
○ Increasing graphical capabilities
○ Different technical approaches
○ Parallel continuums, not discrete steps

● Here I approach CG through demos
○ Why not games?



The generations
● Character graphics
● Bitmap graphics
● Some hybrids
● Chunky
● Fixed-function pipeline
● Shaders



Character graphics



Character graphics
● Typical of 8-bit computers

○ What else would you do than show text?
● The dominant paradigm until the mid-1980s
● Well suited for small memory
● Not all character graphics come equal

○ ROM character sets
○ User-definable fonts, effectively yielding free-form 

graphics
○ Commodore VIC-20 (1980), C-64 (1982), MSX 

(1983)



Character graphics

Typical resolutions: 32x24 and 40x25 
characters of 8x8 pixels (256x192, 320x200)



Character graphics
● Fast updates:

○ Change one character, updated everywhere
○ Change all screen content with little bandwidth

● Suitable for game level blocks
● Individual pixels tedious to access
● Let’s see some examples!



Bitmap graphics
● Consist of one or more bitplanes
● Typical of the “16-bit generation”

○ Commodore Amiga (1985)
○ Atari ST (1984)
○ Most IBM PC graphics modes (EGA/VGA, 1984–)

● 2^bitplanes = number of colors
● User-definable palette as opposed to fixed 

colors



Bitmap graphics
Plane 0: 000010001 00001000 10001000 ...
Plane 1: 100001100 01111100 00100010 ...
Plane 2: 111000100 00010000 11100000 ...

2³= eight possible colors

First pixel: 110, color number 6



Bitmap graphics
● Hard to set an individual pixel to a certain 

color
○ Need to touch multiple bitplanes, even eight
○ Need to fiddle with individual bits

● Notable strengths, too
○ An individual bitplane can be redrawn fast
○ Bitplanes are independent – transparent and 

translucent layers easy to do 
● And then examples



Bitmap graphics

“Glenz vectors” by Edward Melia



Some hybrids
● Some 1980s’ computers don’t fit these 

categories
○ Sinclair ZX Spectrum a hybrid between bitmap and 

character mode
○ Oric-1 and Oric Atmos more like teletype
○ Amstrad CPC and Sinclair QL interleaved bitmaps in 

the memory
● Quite many machines featured sprites that 

could be moved around independently



Some hybrids

“Nightmares” by Noice (ZX Spectrum)



Some hybrids

Success crack intro showing sprites (C-64)



Chunky
● Also known as “packed pixel”
● Characteristic of the 1990s IBM PC demos
● First major use in VGA compatible cards 

(1987–)
○ Introduced in MCGA the same year

● On VGA 320x200 pixels with 256 individual 
colors
○ One byte in memory = one pixel
○ So-called linear framebuffer



Chunky
● Now individual pixels were simple to access

○ For example texture mapping easy to implement
○ Transparency/lucency still possible, even though 

relatively heavy
○ Various image deformations appeared

● Attempts to emulate chunky modes with 
character and bitmap graphics
○ Atari ST, Amiga, 8-bit computers



Chunky
● Finally, true color modes in the late 1990s
● 24 bits i.e. three consecutive bytes (R,G,B) 

per pixel
● 16.8 million possible colors!

○ Good color reproduction
○ Straightforward blending of images together

● Need for computing power
○ At this point, 486 and Pentium-class machines

● Let’s see some demos again...



Fixed-function pipeline
● Polygons instead of pixels
● The rise of 3D games
● 3D acceleration originally from expensive 

workstations, esp. Silicon Graphics
● First popularized by 3dfx Voodoo (1996–)
● ATI (AMD) and Nvidia took over soon



Fixed-function pipeline

SGI Indigo 2 (image: SGI Depot)



Fixed-function pipeline
● Everything drawn as polygons

○ Little control over individual pixels
○ Fast 3D graphics
○ Layers, lighting and texturing simple to 

achieve
● No more low-level access to pixels

○ Need to use programming libraries, such as Glide, 
OpenGL and DirectX

● Let’s see how it looked like



Shaders
● The current generation
● Programmability is back
● Geometry, vertex and most notably pixel 

shaders
○ Short pieces of code run fast in parallel
○ Pixel-level access is back

● Previously unseen computing power



Shaders
● Two major approaches:

○ Draw polygons like before and use shaders for 
surface materials, lighting and so on

○ Do calculations for each pixel on the screen
● The latter can be split to:

○ Raymarching (related to raycasting and -tracing)
○ Just come up with some cool-looking mathematical 

formula
● http://www.shadertoy.com/
● And then demos.



Shaders

Raytracing (image: Wikipedia)



Conclusion
● Thousand- or millionfold increases in 

computing power, bandwidth and colors
● Games often the driver
● The underlying platform and community 

preferences together dictate the outcome
● Demoscene’s hardware-pushing ethic

○ … but not just that
● Cultural adoption of technology – how a 

group of people has found use for computers



Further reading
● Boris Burger et al. (2002), Realtime 

Visualization Methods in the Demoscene
● Canan Hastik (2014), Demo Age: New 

Views
● Doreen Hartmann (2014), Animation in the 

Demoscene. From Obfuscation to Category.
● Markku Reunanen (2010), Computer Demos 

– What Makes Them Tick
● Markku Reunanen (2014), Four Kilobyte Art


